Oscillations and uniaxial mechanochemical waves in a model of an active poroelastic medium: Application to deformation patterns in protoplasmic droplets of Physarum polycephalum

نویسندگان

  • Sergio Alonso
  • Ulrike Strachauer
  • Markus Radszuweit
  • Markus Bär
  • Marcus J. B. Hauser
چکیده

Self-organization in cells often manifests itself in oscillations and waves. Here, we address deformation waves in protoplasmic droplets of the plasmodial slime mold Physarum polycephalum by modelling and experiments. In particular, we extend a one-dimensional model that considered the cell as an poroelastic medium, where active tension caused mechanochemical waves that were regulated by an inhibitor (M. Radszuweit et al., Phys. Rev. Lett. 110 (2013), 138102). Our extension consists of a simple, qualitative chemical reaction-diffusion model (Brusselator) that describes the regulation of the inhibitor by another biochemical species. The biochemical reaction enhances the formation of mechanochemical waves if the reaction rates and input concentrations are near or inside an oscillatory regime. The period of the waves is found to be controlled by the characteristic oscillation period, whereas their wavelength is set by mechanical parameters. The model also allows for a systematic study of the chemical ∗Corresponding author Email addresses: [email protected] (Sergio Alonso), [email protected] (Markus Bär), [email protected] (Marcus J. B. Hauser) Preprint submitted to Journal of LTEX Templates July 3, 2015 activity at the onset of mechanochemical waves. We also present examples for pattern formation in protoplasmic droplets of Physarum polycephalum including global oscillations where the central region of the droplets is in antiphase to the boundary zone, as well as travelling and standing wave like uniaxial patterns. Finally, we apply our model to reproduce these experimental results by identifying the active tension inhibitor with the intracellular calcium concentration in the Physarum droplets and by using parameter values from mechanical experiments, respectively knowledge about the properties of calcium oscillations in Physarum. The simulation results are then found to be in good agreement with the experimental observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Active Poroelastic Model for Mechanochemical Patterns in Protoplasmic Droplets of Physarum polycephalum

Motivated by recent experimental studies, we derive and analyze a two-dimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a description of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consis...

متن کامل

Plane Strain Deformation of a Poroelastic Half-Space Lying Over Another Poroelastic Half-Space

The plane strain deformation of an isotropic, homogeneous, poroelastic medium caused by an inclined line-load is studied using the Biot linearized theory for fluid saturated porous materials. The analytical expressions for the displacements and stresses in the medium are obtained by applying suitable boundary conditions. The solutions are obtained analytically for the limiting case of undrained...

متن کامل

Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum

Plasmodium of slime mould Physarum polycephalum is a large single celled organism visible unaided by the eye. This slime mould is capable of optimising the shape of its protoplasmic networks in spatial configurations of attractants and repellents. Such adaptive behaviour can be interpreted as computation. When exposed to attractants and repellents, Physarum changes patterns of its electrical ac...

متن کامل

Caffeine-Induced Surface Blebbing and Budding in the Acellular Slime Mold Physarum polycephalum

Physarum polycephalum, Surface Blebbing and Budding, Caffeine, Plasmalemma, Cytoplasmic Äctomyosin The mechanism of plasma membrane proliferation was studied in the acellular slime mold Physarum polycephalum with the aid of light and electron microscopical techniques. Treatment of protoplasmic drops with a Tris-buffered 15 m M caffeine solution causes surface blebbing and budding over periods o...

متن کامل

On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum Machine in the dark?

Plasmodium of Physarum polycephalum is a single cell visible by unaided eye, which spans sources of nutrients with its protoplasmic network. In a very simple experimental setup we recorded electric potential of the propagating plasmodium. We discovered a complex interplay of short range oscillatory behaviour combined with long range, low frequency oscillations which serve to communicate informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015